
A Fresh Approach to Concurrency 
in (server-side) JavaScript

Hannes Wallnöfer
RingoJS



10+ years of server-side 
JavaScript on the JVM

Helma (1998 – 2008)
RingoJS (2008 - )

Both using shared memory multi-threading (that 
was how you did it back then)

RingoJS moving to isolated workers in next version 
(will merge to github master soon)



Threading models



What's wrong with 
shared memory multi-threading?

It works most of the time

When it fails, it fails in weird and 
unpredictable ways

You can't see it in the code



Any other way beside the old way 
and a single-threaded event loop?

Want to allow blocking

Want to leverage JVM threads

There's a third way (with many names): 
Actors, workers, shared-nothing threads, 
lightweight processes, message passing...



W3C Web Workers

Fully isolated JavaScript environments

No access to DOM

Asynchronous message passing using 
JSON serialization



Web Workers in the browser



Workers in Ringo



Shared global scope in Ringo

• greatly reduces worker instantiation 
overhead

• allows us not to JSON-serialize 
parameters between workers (unless 
we want to)

• provides a simple way to opt-in to 
shared data:

global.foo = "bar";



Demo

The most inefficient Fibonacci 
implementation ever, spawns 1000s of 
workers

fib(17): 6 seconds in Ringo, about 50 
seconds in Firefox 7



Each Ringo worker has its own 
single-threaded event loop

Works with setTimout(), setInterval(), 
and things built on top of that such as 
promises

Does not work yet with events 
triggered from external sources (e.g. 
Java libraries)



Ringo still supports blocking

Synchronous I/O

var bytes = file.read();

Semaphores (introduced with workers)

semaphore.signal();
semaphore.tryWait(2000, 3);

 



Mixing blocking and event loops

Short answer: Don't!

Long answer: It depends on how long 
you block and how much liveness you 
need. But better to run your blocking 
code in a separate worker!



Suggested usage patterns

Separate long running, synchronous 
code from short running, asynchronous 
code 

(that's basically what workers were intvented for) 

(but in Ringo it goes both ways) 



Problem: how to receive callbacks from 
workers in long-running, sync code?

Remember, callbacks won't fire until the code 
launching the worker has terminated, which 
may be never.



Semaphores to the rescue

var worker = new Worker("foo.js");

var result, error, semaphore = new Semaphore();

worker.onmessage = function(e) {

result = e.data;

semaphore.signal();

};

worker.onerror = function(e) {

error = e.data;

semaphore.signal();

};

worker.postMessage("foo", true);

semaphore.wait();



Unsolved problems

Pooling and reusing "dirty" workers
• Different worker pools for different purposes?
• Better support for leasing/releasing workers

Make sure events from Java libraries 
run within the event loop

• Event-loop aware event dispatcher 



Questions?

@hannesw
http://ringojs.org


	PowerPoint Presentation
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

