
RingoJS 

Server-side JavaScript on the Java VM

Hannes Wallnöfer



Why the JVM?

• Very stable server side runtime
• Super fast memory allocation, garbage collection
• Fast, scalable networking
• Native multi-threading
• Lots of high quality open source libraries

Not so great...
• Big memory footprint



Why JavaScript?

• Simple, well known language

– Very dynamic: no typing, no classes, prototypal inheritance

– Objects are just hash tables
• Great for functional programming

– Closures
– Functions are first class objects

• Has some quirks
• Lacks concept for structuring code
• Lacks standard libraries for I/O, file system, processes, etc.



Mozilla Rhino

A JavaScript engine written in Java.

• First developed by Netscape, now a Mozilla project
• Smooth Java integration: 

– Full access to Java libraries

– Implement Java classes in JS
• Supports most of ECMAScript 5 and JavaScript 1.8



Rhino Performance

Used to be fast, by today's standards it's too slow
• Java 1.7 invokedynamic to the rescue

– Makes dynamic method invocation as fast and optimizable as 
ordinary Java method invocation

• We're also working on adopting other V8 optimizations

– Hidden classes

• Watch us! http://github.com/mozilla/rhino



Rhino performance in practice

• Still fast thanks to JVM
• Beats Node.js in some benchmarks



Enter RingoJS

RingoJS provides:

• Module loader based on CommonJS Modules 1.1

– var fs = require('fs');

– exports.foo = 'bar';
• Package support (loosely) based on CommonJS Packages 1.0

– a directory containing a package.json file



Enter RingoJS (continued)

• Testing framework (test runner, assert)
• I/O, filesystem access
• HTTP client and server
• Command line infrastructure (shell, argument parser, 

subprocesses)
• Logging (based on SLF4J)
• Development tools (debugger, jsdoc, profiler)
• Scheduler (setTimeout, setInterval)
• Utils (objects, arrays, dates, numbers...)



Building RingoJS Web Apps

• Older versions of RingoJS (0.7 and earlier) tried to provide full web 
framework (templating, database abstraction)

• With 0.8, we're retargeting on core functionality

– This includes low-level HTTP infrastructure

– But not an actual high-level framework

– Expect frameworks to grow out of ecosystem



Deploying RingoJS Web Apps

• Debian/Ubuntu packages
– daemon script calls init() with root uid, start() with normal uid 

so it can listen on privileged ports.

• Google App Engine
– free quota is enough to run small sites



Stick: a RingoJS web app framework

http://github.com/hns/stick

• Request Routing
• Static Files
• Parameter and File Upload Parsing
• Sessions
• Templating
• Error and 404 Handling
• Gzip Compression
• ETag based conditional GET



Asynchronous Web Apps

• Asynchronous response

– detach current thread from request
• Promise based response

– resume when promise is fulfilled
• WebSocket support out of the box



Not just for web apps!

• Command line applications

– argument parser

– launch subprocesses
• GUI applications

– based on Swing or any other Java GUI toolkit



Questions?

http://ringojs.org/
http://github.com/ringo/ringojs
Twitter: @ringojs, @hannesw


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

