RingoJS

Server-side JavaScript on the Java VM
Hannes Wallnofer

seveonf

Why the JVM?

* Very stable server side runtime

* Super fast memory allocation, garbage collection
* Fast, scalable networking

* Native multi-threading

* Lots of high quality open source libraries

Not so great...
* Big memory footprint

http://www.devconf.ru

Akshell

seveonf

Akshell

Why JavaScript?

Simple, well known language
— Very dynamic: no typing, no classes, prototypal inheritance
— Objects are just hash tables
Great for functional programming
— Closures
— Functions are first class objects
Has some quirks
Lacks concept for structuring code
Lacks standard libraries for 1/O, file system, processes, etc.

http://www.devconf.ru

seveonf

Akshell

Mozilla Rhino

A JavaScript engine written in Java.

* First developed by Netscape, now a Mozilla project
* Smooth Java integration:

— Full access to Java libraries

— Implement Java classes in JS
* Supports most of ECMAScript 5 and JavaScript 1.8

http://www.devconf.ru

seveonf

Akshell

Rhino Performance

Used to be fast, by today's standards it's too slow
* Java 1.7 invokedynamic to the rescue

— Makes dynamic method invocation as fast and optimizable as
ordinary Java method invocation

* We're also working on adopting other V8 optimizations
— Hidden classes
* Watch us! http://github.com/mozilla/rhino

http://www.devconf.ru

seveonf

Akshell

Rhino performance in practice

* Still fast thanks to JVM
* Beats Node.js in some benchmarks

50k string allocation/request (-n 50000 -c 50)

&0 | | T | T | | | T
node
ringo
50 |19 /Jl
w ff.f
E a0 - - -
LK} ___,.J—"-H_/
E - |
=)
o ~ '
s L /J
a 20 _,f -
[K] -
[l :._,. —
10 f . -
_a—f’fﬂ
u | 1 | | | 1 1 | |
0 S000 10000 15000200002500030000 35000400004500050000
reguests
http://www.devconf.ru

seveonf

Akshell

Enter Ringo)S

Ringo)S provides:

* Module loader based on Common]S Modules 1.1
— var fs = require('fs');
— exports.foo = 'bar’;

* Package support (loosely) based on Common]JS Packages 1.0
— a directory containing a package.json file

http://www.devconf.ru

seveonf

Enter Ringo)S (continued)

Testing framework (test runner, assert)
/O, filesystem access
HTTP client and server

Command line infrastructure (shell, argument parser,
subprocesses)

Logging (based on SLF4))

Development tools (debugger, jsdoc, profiler)
Scheduler (setTimeout, setinterval)

Utils (objects, arrays, dates, numbers...)

http://www.devconf.ru

Akshell

seveonf

Akshell
Building RingoJS Web Apps

* Older versions of Ringo)S (0.7 and earlier) tried to provide full web
framework (templating, database abstraction)

* With 0.8, we're retargeting on core functionality
— This includes low-level HTTP infrastructure
— But not an actual high-level framework
— Expect frameworks to grow out of ecosystem

http://www.devconf.ru

seveonf

Akshell
Deploying Ringo)S Web Apps

* Debian/Ubuntu packages

— daemon script calls init() with root uid, start() with normal uid
so it can listen on privileged ports.

* Google App Engine
— free quota is enough to run small sites

http://www.devconf.ru

seveonf

Akshell

Stick: a RingoJS web app framework

http://github.com/hns/stick

* Request Routing

* Static Files

* Parameter and File Upload Parsing
* Sessions

* Templating

* Error and 404 Handling

* Gzip Compression

* ETag based conditional GET

http://www.devconf.ru

seveonf

Akshell

Asynchronous Web Apps

* Asynchronous response

— detach current thread from request
* Promise based response

— resume when promise is fulfilled
* WebSocket support out of the box

http://www.devconf.ru

seveonf

Akshell

Not just for web apps!

* Command line applications
— argument parser

— launch subprocesses
* GUI applications

— based on Swing or any other Java GUI toolkit

http://www.devconf.ru

seveonf

Questions?

http://ringojs.org/
http://github.com/ringo/ringojs
Twitter: @ringojs, @hannesw

http://www.devconf.ru

Akshell

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

